

2nd Xiamen International Forum on Urban Environment:

ZeroWasteWater: Short-cycling of Wastewater Resources for Sustainable Cities of the Future

W. Verstraete, B. Bundervoet & B. Eggermont

Lab. Microbial Ecology and Technology (LabMET) Faculty of Bioscience Engineering, Ghent University Coupure L 653, B-9000 Gent, Belgium www.LabMET.UGent.be

States of the states of the

1. Escape to the city: a urban utopia

"Urbanites now outnumber their rural cousins – and that's surprisingly **good news** for the environment"

"The average New Yorker produces just 30 per cent of the greenhouse emissions of the average US citizen"

(Barley 2010; New Scientist 2785, 32-37)

Parking of the solution of the second of the

2. Panic won't save the world

A BOLD NEW VISION FROM BJORN LOMBORG AUTHOR OF "THE SKEPTICAL ENVIRONMENTALIST"

THE CONVERSATION IS HEATING UP

"FAR MORE CONVINCING THAN 'AN INCONVENIENT TRUTH.'" -PETER FOSTER, FINANCIAL POST

Positive and <u>effective</u> remedies:

- promote basic sanitation
- implement green roofs

(Bjorn Lomborg)

States of the Property of the Article States of the Article States

3. Myth: Sanitation worldwide is resolved

The WC with a water footprint of some 130 L water per capita per day is "unsustainable"

Currently 2.6 billion people have no decent sanitation

Sanitation is taboo in many cultures, religions, science, ...

Particle of the solution of the

Result of the taboo:

States of the states of the state of the states of the

4. New approaches for sanitation are needed

The "Urban Metabolism" of the "Cities, towns and villages of the Future"
 it must be redesigned drastically

• Rich countries must give the example

4. New approaches for sanitation are needed

Durban (South Africa) pays inhabitants for urine

- Dry toilets (water is scarce in Africa)
- Family can earn about 3 €/week by delivering urine

World Toilet Day - 19 November 2010

Poor access to water, sanitation and hygiene has a particularly acute impact on <u>women</u> and <u>girls</u>, affecting their health, dignity and life chances. (<u>http://www.wateraid.org/uk</u>)

National And Contract of the C

4. New approaches for sanitation are needed

Pure urine as liquid NSF is interesting for agricultural applications in developing countries

BUT can contain some hazardous components (e.g. pharmaceuticals)

Possible treatments:

- Electrodialysis
- Struvite
- Sand filtration + solar drying

(Pronk and Kone 2009; Desalination 248, 360-368)

Name of the state of the state

5. The old and the new water cycle

OLD Natural system **Purification** Transport USER Transport **Dissipative treatment** Natural system

And the second of the second second second second

5. The old and the new water cycle

Production of drinking water in developing countries: **SODIS**

- A PET bottle in the sun !
- The diarrhoea decreases by a factor 3 (SandecNews, EAWAG Aquatic Res., Aug. 2010)
- The costs are affordable because below 0.1 €/m³

<u>Key issues are</u> : We should be humble enough to upgrade SODIS and propagate its use.

States of the second second

5. The old and the new water cycle

Production of drinking water in developing countries: SODIS

States of the second second

5. The old and the new water cycle

A. Decentralized: Maximum storage

5. The old and the new water cycle

A. Decentralized: Elegant integration in the street

Multilayer Combined Bio-Trickling Filter (MC-BTF); Shangai

Unit for 100 families!

(Kuai Linping, Shanghai Jiao Tong University, China)

States of the second second second second second

5. The old and the new water cycle

A. Decentralized: Autonomic treatment

(Vlaeminck et al. 2007; Appl. Microbiol. Biotechnol. 74: 1376-1384; LabMET)

Name of the state of the state

5. The old and the new water cycle

A. Decentralized: Autonomic treatment

UASB (ST)	SRT = 75 d
	$HRT_{min} = 10 d$
	T = 30 °C
Decantor	HRT = 30 min
OLAND	HRT _{min} = 3 d
Solar still	HRT = months

(Zeeman et al. 2008; Water Sci. & Techn. 57, 1207-1212)

5. The old and the new water cycle

GENT

A. Decentralized: Autonomic treatment

Case study (Sneek, Netherland): Pioneer project of 32 houses with vacuum toilets (flushing with 1L in stead of 7L)

net energy production of 5 kWh_{el} IE⁻¹ year ⁻¹

(Zeeman et al. 2008; Water Sci. & Techn. 57, 1207-1212)

Name of the state of the state

5. The old and the new water cycle

GENT

A. Decentralized: Green roofs

(heat, evaporation)

Rain and pretreated sewage not in sewer; it can be used to maintain:

- Green rooftops
- Algae cultivation

(Zamolla et al. In prep.; LabMET)

or 1000 kWh_{el} home⁻¹ year⁻¹

5. The old and the new water cycle

A. Decentralized: Algae cultivation on domestic roofs

production of 20 g dry mater m⁻² d⁻¹

➔ gross energy recovery of 8.7 kWh_{el} m⁻² year⁻¹

photovoltaic panels: 100 kWh_{el} m⁻² year⁻¹

Other advantages:

- Recycle grey water nutrients
- Uptake of CO₂
- Management of storm water
- Cooling of the house

(Zamolla et al. In prep.; LabMET)

(Verstraete & Vlaeminck, 2010; Keynote Paper 2nd Xiamen International Forum on Urban Environment; LabMET)

5. The old and the new water cycle

GENT

B. Centralized: Conventional activated sludge (CAS) design

- Capex + Opex: 17 40 EUR IE⁻¹ year⁻¹
- Energy use: 20-35 kWh_{el} IE⁻¹ year⁻¹
- Energy recovery via sludge digestion is limited

◊ Theor.: 30-40 kWh IE⁻¹ year⁻¹

◊ Pract.: 15-20 kWh IE⁻¹ year⁻¹

- N, P, K \rightarrow no recovery
- All organic C via biology + sludge incineration to CO₂
- Water → hardly re-used

Take home: The <u>centralized wastewater</u> treatment must be redesigned entirely!

Service of the servic

5. The old and the new water cycle

B. Centralized: Retrofitting of CAS-design

Macao (Egypt): sewage treatment plant

INESS[®] Integrated New Energy Solutions & Services wastewater treatment plant powered by the sun

Wind turbine

Anaerobic digester

Photovoltaic roof

Towards minimal

 external power consumption

Parkielo de la construction de la construction de la

6. New Urban Metabolism

GENT

Food wastes are properly re-used

- Food consumes 15% of the US overall energy budget
- About 20% of food is wasted, i.e. 2-3% of the total energy budget (Webber & Cuellar, 2010; EST; DOI 10:1021)

Take home:

- Co-digestion can recover a major part of this energy
- Food and kitchen wastes can be the driver of a new type of wastewater treatment

Parking and a state of the second and the

7. Sewage as a resource

	Production IE ⁻¹ year ⁻¹			Value (EUR IE ⁻¹ year ⁻¹)		
Resources	Sewage	Kitchen waste	Market price		Sewage	Sewage + Kitchen waste
Potable water	54 m ³		1.2 E	EUR m⁻³	65.4	65.4
Heat recovered (5°cooling) Electricity consumption Heat recovered 	-179 kWh _{el} 496 kWh _{th}		0.10 El 0.05 El	JR kWh _{el} ⁻¹ JR kWh _{th} ⁻¹	} 6.9	6.9
Anaerobic digestion Electricity produced Heat generated 	23 kWh _{el} 24 kWh _{th}	16 kWh _{el} 17 kWh _{th}	0.10 El 0.05 El	JR kWh _{el} ⁻¹ JR kWh _{th} ⁻¹	3.5	5.9
Biochar production	5.7 kg	3.9 kg	0.14 I	EUR kg ⁻¹	0.8	1.3
Recovered nitrogen	2.4 kg	0.2 kg	1.15 E	UR kg⁻¹ N	2.7	2.9
Recovered phosphorus	0.82 kg	0.66 kg	1.35 E	UR kg ⁻¹ P	1.1	2.0
				Overall	80.4	84.5

(Verstraete & Vlaeminck, 2010; Keynote Paper 2nd Xiamen International Forum on Urban Environment; LabMET)

Number of the second second second second second

8. Sewage as a resource of water

- 0.017 for concentrate discharge
- + 0.860 for water valorization

(Verstraete et al. 2009; Bioresource Techn. 100, 5537-5545; LabMET)

<u>**Take home</u>**: If RO-permeate is used at value, CAS + UF + RO pays already for itself !</u>

Particle of the second second second second second

8. Sewage as a resource of <u>water</u>

Case study: Koksijde, Belgium (IWVA)

(Dewettinck et al., 2001; Water Sci. Technol. 43: 31-38; LabMET)

Take home: this technology was upscaled in Singapore -> NEWater

9. The "Zero-Waste" Water Technology

(Verstraete et al. 2009; Bioresource Techn. 100, 5537-5545; LabMET)

Harden and a second state of the second state of

10. Sewage as a multi-resource

Crucial step = up-concentration

(creating a pre-effluent easy cleanable with UF/RO + concentrate waste load with 10 – 20 times more COD/m³)

Examples of up-concentration (prevention of sewage dilution)

- Separate sewer system (rain water and waste water)
- 50 % less infiltration of ground water in sewer
- Domestic water conservation
- Use of kitchen waste
- Control microbial degradation

→ Already (5 – 10 times) upconcentration possible

(Verstraete & Vlaeminck, 2010; Keynote Paper 2nd Xiamen International Forum on Urban Environment; LabMET)

Reading of the state of the sta

10. Sewage as a multi-resource

Crucial step = up-concentration

(creating a pre-effluent easy cleanable with UF/RO + concentrate waste load with 10 – 20 times more COD/m³)

Examples for up-concentration (Physical/Chemical)

Reality of the second second second second second

10. Sewage as a multi-resource

Crucial step = up-concentration

(creating a pre-effluent easy cleanable with UF/RO + concentrate waste load with 10 – 20 times more COD/m³)

Examples for up-concentration (Biological)

Adsorption Bio-Aeration or A/B-Boehnke concept

(Boehnke et al. 1998; Water-Engineering & Management 145, 31-34)

Reading of the state of the sta

10. Sewage as a multi-resource

Cost consideration for the proposed sewage recycling technology (according to C2C)

- → the major flow: directly to reuse
- → the minor flow (= a concentrate): produced at the entry of the plant, subjected to advanced recovery for energy and fertilizers

<u>Major flow</u>	
Dissolved air flotation	0.02-0.03 €/m ³
Dynamic sand filtration	0.05-0.06 €/m ³
Ultra filtration and Reverse Osmosis	0.46-1.06 €/m ³
<u>Minor flow</u>	
Anaerobic digestion	Break even
Mechanical separation	0.08-0.10 €/m ³ - 0.08-0.10 €/m ³
Pyrolysis	Break-even
	Total costs*: 0.61-1.25 €/m ³

* this is the estimated total cost

(Verstraete et al. 2009; Bioresource Techn. 100, 5537-5545; LabMET)

Take home: Total costs of about 1 €/m³ are comparable with CAS + UF + RO

Reality of the second second

10. Sewage as a multi-resource

- AD of the "concentrate-line"
 - Add organics from 0.5 g COD/L to 5.0 g COD/L to 50 g COD/L
 The burned biogas, i.e. CO₂ can be used to grow algae
- ✤ After AD → Separator: Decantor centrifuge with(out) PE
- Pyrolysis to biochar (Lehmann et al. 2007; Nature 447, 143-144)
 - Development needed in terms of
 - Pyrolysis of dry solids
 - Quality & optimal use of biochar
 - Economically feasible?
 - Improves soil fertility (= economic value)
 - 1 ton C \approx 3 ton CO₂ \approx 39 \in with 13 \in /tCO₂ (IETA, greenhouse gas market 2010)

10. Sewage as a multi-resource: CO₂

CO2 use by algal forestry:

Digester gas treatment and energy production

(De Schamphelaire & Verstraete 2009; Biotechn. Bioeng. 103, 296-304; LabMET)

10. Sewage as a multi-resource: Phosphorus

(Sources: US Geological Survey Minerals Yearbook 2006 and the World Bank commodity data 2010)

Particle of the second second second second second

10. Sewage as a multi-resource: Nitrogen

(Sources: US Geological Survey Minerals Yearbook 2006, 2008 and the World Bank commodity data 2010)

Parking and a second second second second

10. Sewage as a multi-resource

(Verstraete & Vlaeminck, 2010; Keynote Paper 2nd Xiamen International Forum on Urban Environment; LabMET)

Parkielo de la construction de la construction de la

10. Sewage as a multi-resource

	Energy gain (kW	Avoided CO2 emission	
	Electricity	Heat	(kg CO ₂ IE ⁻¹ year ⁻¹)
Kitchen grinder	-1.4		-0.9
Advanced concentrator	-6.0		-3.6
OLAND	12.8		6.6
Heat recovery	-179	496	41.7
Anaerobic digestion	38.9		23.3
Sludge dewatering	1.8		1.1
N recovery	-9.6	40.8	4.5
P recovery	1.2		2.0
Biochar			13.3
sum	-141	537	88

Take home: Zero WasteWater prevents 1-4 % of the CO₂ emissions per IE

(Verstraete & Vlaeminck, 2010; Keynote Paper 2nd Xiamen Intern. Forum on Urban Environment; LabMET)

10. Sewage as a multi-resource: Economically

CAS design: - Total cost with water recovery $\approx 1.0 \text{ f/m}^3$

- ≈ 1.0 €/m³
- Net costs upon sale of RO-permeate = $0.0 \notin m^3$

C2C design - Total cost with up-recycling of water, energy & nutrients ≈ 1.0 €/m³

- Net costs upon sale of RO-permeate = $0.0 \notin m^3$

→ Perspective:

- CO₂ recycling via algae
- Recovery of struvite
- C-storage as biochar

Take home:

The C2C design can already be achieved at equal costs of the CAS + it holds plenty of extra potentials

Stable Contract of the second state of the second state of

10. Sewage as a multi-resource: Economically

- **Note:** No activated sludge with biosolids production, no denitrification, no biol. P-removal, no explicit disinfection !!!
 - Still problematic: micropollutants

<u>**Take home:</u>** To have a set of advanced case-specific processes available, can be useful</u>

11. Evaluate sewage treatment plant with LCA

Life Cycle Assessment or LCA

is a process to evaluate the <u>environmental burdens</u> associated with a product, process or activity by identifying, quantifying and assessing energy and materials used and wastes released to the environment

11. Evaluate sewage treatment plant with LCA

LCA : Identify and evaluate opportunities to effect environmental improvements for policy makers, product developers, ...

- **standard units** to compare technologies (e.g. CO₂-equivalents IE⁻¹)
- Use of mili Persons Equivalent or mPE to evaluate the impact of a certain product/process
 - 1000 mPE = 100% of the yearly pollution of a specific kind (e.g. eutrofication, acidification, global warming, ...)
 - e.g. 58 kg NO₃-equivalents = 1000 mPE_{eutrofication} - 8700 kg CO₂-equivalents = 1000 mPE_{CO2}

11. Evaluate sewage treatment plant with LCA

Some	mPE's of	waste	water	treatment
------	----------	-------	-------	-----------

	Conventional	Zero waste water
Eutrofication	115 mPE	RKK
Ecotoxicity	85 mPE	
Acidification	30 mPE	
Global warming potential	18 mPE	

(Clauwaert et al 2010; WT-Afvalwater 10, 186-195; Aquafin)

Take home: wastewater treatment still has a relatively large share in the environmental pollution; this can be decreased significantly!

Maddiele and a state of the sta

12. Conclusions

- We have to redesign the sewage System entirely
 - Separation at source (NoMix)
 - Separation at STP
- Up-concentration is a crucial step

Several lines of up-concentration are under development

- Management
- Physical/chemical
- Biological
- AD is a key process in the recovery of Energy and Nutrients
- We must work towards a "Zero Waste"-Water Technology both at decentralized as centralized level
- Thus we can truly deal with the environmental burdens of the water cycle